دانلود مقاله ISI انگلیسی شماره 133782
ترجمه فارسی عنوان مقاله

پیش بینی توابع ژن مطلوب برای استئوسارکوم با استفاده از آنتولوژی هسته ای و پروفایل میکروارگانیسم

عنوان انگلیسی
Prediction of optimal gene functions for osteosarcoma using gene ontology and microarray profiles
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
133782 2017 5 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Bone Oncology, Volume 7, June 2017, Pages 18-22

ترجمه کلمات کلیدی
استئوسارکوم، ضریب همبستگی اسپیرمن، هسته شناسی ژن، منطقه تحت منحنی، شبکه همبستگی دیفرانسیل، گناه توسط انجمن،
کلمات کلیدی انگلیسی
Osteosarcoma; Spearman correlation coefficient; Gene ontology; Area under the curve; Differential co-expression network; Guilt by association;
پیش نمایش مقاله
پیش نمایش مقاله  پیش بینی توابع ژن مطلوب برای استئوسارکوم با استفاده از آنتولوژی هسته ای و پروفایل میکروارگانیسم

چکیده انگلیسی

In the current study, we planned to predict the optimal gene functions for osteosarcoma (OS) by integrating network-based method with guilt by association (GBA) principle (called as network-based gene function inference approach) based on gene ontology (GO) data and gene expression profile. To begin with, differentially expressed genes (DEGs) were extracted using linear models for microarray data (LIMMA) package. Then, construction of differential co-expression network (DCN) relying on DEGs was implemented, and sub-DCN was identified using Spearman correlation coefficient (SCC). Subsequently, GO annotations for OS were collected according to known confirmed database and DEGs. Ultimately, gene functions were predicted by means of GBA principle based on the area under the curve (AUC) for GO terms, and we determined GO terms with AUC >0.7 as the optimal gene functions for OS. Totally, 123 DEGs and 137 GO terms were obtained for further analysis. A DCN was constructed, which included 123 DEGs and 7503 interactions. A total of 105 GO terms were identified when the threshold was set as AUC >0.5, which had a good classification performance. Among these 105 GO terms, 2 functions had the AUC >0.7 and were determined as the optimal gene functions including angiogenesis (AUC =0.767) and regulation of immune system process (AUC =0.710). These gene functions appear to have potential for early detection and clinical treatment of OS in the future.