دانلود مقاله ISI انگلیسی شماره 141266
ترجمه فارسی عنوان مقاله

شناخت احساسات مبتنی بر احساس با درک عمیق

عنوان انگلیسی
Respiration-based emotion recognition with deep learning
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
141266 2017 7 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers in Industry, Volumes 92–93, November 2017, Pages 84-90

ترجمه کلمات کلیدی
شناخت احساسی، یادگیری عمیق، محاسبات پوشیدنی، تنفس، نظریه تحریک و تحریک
کلمات کلیدی انگلیسی
Emotion recognition; Deep learning; Wearable computing; Respiration; Arousal-valence theory;
پیش نمایش مقاله
پیش نمایش مقاله  شناخت احساسات مبتنی بر احساس با درک عمیق

چکیده انگلیسی

Different physiological signals are of different origins and may describe different functions of the human body. This paper studied respiration (RSP) signals alone to figure out its ability in detecting psychological activity. A deep learning framework is proposed to extract and recognize emotional information of respiration. An arousal-valence theory helps recognize emotions by mapping emotions into a two-dimension space. The deep learning framework includes a sparse auto-encoder (SAE) to extract emotion-related features, and two logistic regression with one for arousal classification and the other for valence classification. For the development of this work an international database for emotion classification known as Dataset for Emotion Analysis using Physiological signals (DEAP) is adopted for model establishment. To further evaluate the proposed method on other people, after model establishment, we used the affection database established by Augsburg University in Germany. The accuracies for valence and arousal classification on DEAP are 73.06% and 80.78% respectively, and the mean accuracy on Augsburg dataset is 80.22%. This study demonstrates the potential to use respiration collected from wearable deices to recognize human emotions.