دانلود مقاله ISI انگلیسی شماره 159166
ترجمه فارسی عنوان مقاله

یک چارچوب ارزیابی خودکفا برای شبکه های اجتماعی آنلاین

عنوان انگلیسی
A privacy self-assessment framework for online social networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
159166 2017 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 86, 15 November 2017, Pages 18-31

ترجمه کلمات کلیدی
اقدامات حریم خصوصی، شبکه های اجتماعی آنلاین، یادگیری فعال،
کلمات کلیدی انگلیسی
Privacy measures; Online social networks; Active learning;
پیش نمایش مقاله
پیش نمایش مقاله  یک چارچوب ارزیابی خودکفا برای شبکه های اجتماعی آنلاین

چکیده انگلیسی

During our digital social life, we share terabytes of information that can potentially reveal private facts and personality traits to unexpected strangers. Despite the research efforts aiming at providing efficient solutions for the anonymization of huge databases (including networked data), in online social networks the most powerful privacy protection “weapons” are the users themselves. However, most users are not aware of the risks derived by the indiscriminate disclosure of their personal data. Moreover, even when social networking platforms allow their participants to control the privacy level of every published item, adopting a correct privacy policy is often an annoying and frustrating task and many users prefer to adopt simple but extreme strategies such as “visible-to-all” (exposing themselves to the highest risk), or “hidden-to-all” (wasting the positive social and economic potential of social networking websites). In this paper we propose a theoretical framework to i) measure the privacy risk of the users and alert them whenever their privacy is compromised and ii) help the users customize semi-automatically their privacy settings by limiting the number of manual operations. By investigating the relationship between the privacy measure and privacy preferences of real Facebook users, we show the effectiveness of our framework.