دانلود مقاله ISI انگلیسی شماره 28770
ترجمه فارسی عنوان مقاله

مثلث بندی شبکه های بیزی با برآورد بازگشتی از الگوریتم های توزیع

عنوان انگلیسی
Triangulation of Bayesian networks with recursive estimation of distribution algorithms
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
28770 2009 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Approximate Reasoning, Volume 50, Issue 3, March 2009, Pages 472–484

ترجمه کلمات کلیدی
شبکه های بیزی - ارزیابی الگوریتم های توزیع - مثلث - استنتاج - درخت تقاطع -
کلمات کلیدی انگلیسی
Bayesian networks, Estimation of distribution algorithms, Triangulation, Inference, Junction tree,
پیش نمایش مقاله
پیش نمایش مقاله  مثلث بندی شبکه های بیزی با برآورد بازگشتی از الگوریتم های توزیع

چکیده انگلیسی

Bayesian networks can be used as a model to make inferences in domains with intrinsic uncertainty, that is, to determine the probability distribution of a set of variables given the instantiation of another set. The inference is an NP-hard problem. There are several algorithms to make exact and approximate inference. One of the most popular, and that is also an exact method, is the evidence propagation algorithm of Lauritzen and Spiegelhalter [S.L. Lauritzen, D.J. Spiegelhalter, Local computations with probabilities on graphical structures and their application on expert systems, Journal of the Royal Statistical Society B 50 (2) (1988) 157–224], improved later by Jensen et al. [F.V. Jensen, S.L. Lauritzen, K.G. Olesen, Bayesian updating in causal probalistic networks by local computations, In Computational Statistics Quaterly 4 (1990) 269–282]. This algorithm needs an ordering of the variables in order to make the triangulation of the moral graph associated with the original Bayesian network structure. The effectiveness of the inference depends on the variable ordering. In this paper, we will use a new paradigm for evolutionary computation, the estimation of distribution algorithms (EDAs), to get the optimal ordering of the variables to obtain the most efficient triangulation. We will also present a new type of evolutionary algorithm, the recursive EDAs (REDAs). We will prove that REDAs improve the behaviour of EDAs in this particular problem, and that their results are competitive with other triangulation techniques.