دانلود مقاله ISI انگلیسی شماره 43785
ترجمه فارسی عنوان مقاله

مدل سازی پیشرفته موضوع برای هوش کسب و کار اجتماعی

عنوان انگلیسی
Advanced topic modeling for social business intelligence
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
43785 2015 20 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Systems, Volume 53, October–November 2015, Pages 87–106

ترجمه کلمات کلیدی
هوش کسب و کار - رسانه های اجتماعی - کاربر محتوای تولید شده - مدل سازی چند بعدی
کلمات کلیدی انگلیسی
Business intelligence; Social media; User-generated content; Multidimensional modeling
پیش نمایش مقاله
پیش نمایش مقاله  مدل سازی پیشرفته موضوع برای هوش کسب و کار اجتماعی

چکیده انگلیسی

Social business intelligence combines corporate data with user-generated content (UGC) to make decision-makers aware of the trends perceived from the environment. A key role in the analysis of textual UGC is played by topics, meant as specific concepts of interest within a subject area. To enable aggregations of topics at different levels, a topic hierarchy has to be defined. Some attempts have been made to address the peculiarities of topic hierarchies, but no comprehensive solution has been found so far. The approach we propose to model topic hierarchies in ROLAP systems is called meta-stars. Its basic idea is to use meta-modeling coupled with navigation tables and with dimension tables: navigation tables support hierarchy instances with different lengths and with non-leaf facts, and allow different roll-up semantics to be explicitly annotated; meta-modeling enables hierarchy heterogeneity and dynamics to be accommodated; dimension tables are easily integrated with standard business hierarchies. After outlining a reference architecture for social business intelligence and describing the meta-star approach, we formalize its querying expressiveness and give a cost model for the main query execution plans. Then, we evaluate meta-stars by presenting experimental results for query performances and disk space.