دانلود مقاله ISI انگلیسی شماره 83089
ترجمه فارسی عنوان مقاله

یک چشم انداز در مورد چالش های تحقیقاتی ساختار هوشمند برای مهندسین سیستم های فرایند

عنوان انگلیسی
A Perspective on Smart Process Manufacturing Research Challenges for Process Systems Engineers
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
83089 2017 5 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Engineering, Volume 3, Issue 2, April 2017, Pages 161-165

ترجمه کلمات کلیدی
تولید هوشمند، مهندسی سیستم های فرایند، عدم قطعیت، انعطاف پذیری، بهینه سازی، کنترل مبتنی بر مدل،
کلمات کلیدی انگلیسی
Smart manufacturing; Process systems engineering; Uncertainty; Flexibility; Optimization; Model-based control;
پیش نمایش مقاله
پیش نمایش مقاله  یک چشم انداز در مورد چالش های تحقیقاتی ساختار هوشمند برای مهندسین سیستم های فرایند

چکیده انگلیسی

The challenges posed by smart manufacturing for the process industries and for process systems engineering (PSE) researchers are discussed in this article. Much progress has been made in achieving plant- and site-wide optimization, but benchmarking would give greater confidence. Technical challenges confronting process systems engineers in developing enabling tools and techniques are discussed regarding flexibility and uncertainty, responsiveness and agility, robustness and security, the prediction of mixture properties and function, and new modeling and mathematics paradigms. Exploiting intelligence from big data to drive agility will require tackling new challenges, such as how to ensure the consistency and confidentiality of data through long and complex supply chains. Modeling challenges also exist, and involve ensuring that all key aspects are properly modeled, particularly where health, safety, and environmental concerns require accurate predictions of small but critical amounts at specific locations. Environmental concerns will require us to keep a closer track on all molecular species so that they are optimally used to create sustainable solutions. Disruptive business models may result, particularly from new personalized products, but that is difficult to predict.