دانلود مقاله ISI انگلیسی شماره 96192
ترجمه فارسی عنوان مقاله

درس های آموخته شده در زمینه توسعه و کاربرد مدل های مبتنی بر عامل های سیستم های دینامیکی پیچیده

عنوان انگلیسی
Lessons learned on development and application of agent-based models of complex dynamical systems
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
96192 2018 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Simulation Modelling Practice and Theory, Volume 83, April 2018, Pages 201-212

ترجمه کلمات کلیدی
مدل سازی مبتنی بر عامل، توسعه مدل، آزمایشات مبتنی بر شبیه سازی، سیستم های دینامیکی پیچیده،
کلمات کلیدی انگلیسی
Agent-based modeling; Model development; Simulation-based experimentation; Complex dynamical systems;
پیش نمایش مقاله
پیش نمایش مقاله  درس های آموخته شده در زمینه توسعه و کاربرد مدل های مبتنی بر عامل های سیستم های دینامیکی پیچیده

چکیده انگلیسی

The field of agent-based modelling (ABM) has gained a significant following in recent years, and it is often marketed as an excellent introduction to modelling for the novice modeller or non-programmer. The typical objective of developing an agent-based model is to either increase our mechanistic understanding of a real-world system, or to predict how the dynamics of the real-world system are likely to be affected by changes to internal or external factors. Although there are some excellent ABMs that have been used in a predictive capacity across a number of domains, we believe that the promotion of ABM as an ‘accessible to all’ approach, could potentially lead to models being published that are flawed and therefore generate inaccurate predictions of real-world systems. The purpose of this article is to use our experiences in modelling complex dynamical systems, to reinforce the view that agent-based models can be useful for answering questions of the real-world domain through predictive modelling, but also to emphasise that all modellers, expert and novice alike, must make a concerted effort to adopt robust methods and techniques for constructing, validating and analysing their models, if the result is to be meaningful and grounded in the system of interest.