دانلود مقاله ISI انگلیسی شماره 96205
ترجمه فارسی عنوان مقاله

تجزیه و تحلیل تجربی از معیارهای تغییر برای پیش بینی خطای نرم افزار

عنوان انگلیسی
Empirical analysis of change metrics for software fault prediction
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
96205 2018 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers & Electrical Engineering, Volume 67, April 2018, Pages 15-24

ترجمه کلمات کلیدی
پیش بینی خطای نرم افزار، گرفتگی ورود به سیستم، معیارهای، کیفیت نرم افزار، پیش بینی نقص،
کلمات کلیدی انگلیسی
Software fault prediction; Eclipse; Change log; Metrics; Software quality; Defect prediction;
پیش نمایش مقاله
پیش نمایش مقاله  تجزیه و تحلیل تجربی از معیارهای تغییر برای پیش بینی خطای نرم افزار

چکیده انگلیسی

A quality assurance activity, known as software fault prediction, can reduce development costs and improve software quality. The objective of this study is to investigate change metrics in conjunction with code metrics to improve the performance of fault prediction models. Experimental studies are performed on different versions of Eclipse projects and change metrics are extracted from the GIT repositories. In addition to the existing change metrics, several new change metrics are defined and collected from the Eclipse project repository. Machine learning algorithms are applied in conjunction with the change and source code metrics to build fault prediction models. The classification model with new change metrics performs better than the models using existing change metrics. In this work, the experimental results demonstrate that change metrics have a positive impact on the performance of fault prediction models, and high-performance models can be built with several change metrics.