دانلود مقاله ISI انگلیسی شماره 132390
ترجمه فارسی عنوان مقاله

بهینه سازی قابلیت نیروی استاتیک از روبات های انسان دوستانه بر مبنای تکامل تکاملی خود سازگار

عنوان انگلیسی
Static force capability optimization of humanoids robots based on modified self-adaptive differential evolution
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
132390 2017 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers & Operations Research, Volume 84, August 2017, Pages 205-215

ترجمه کلمات کلیدی
بهینه سازی فراموشی، تکامل دیفرانسیل، بهینه سازی محدود، ربات انسان انسانی، توان نیروی استاتیک،
کلمات کلیدی انگلیسی
Optimization metaheuristic; Differential evolution; Constrained optimization; Humanoid robot; Static force capability;
پیش نمایش مقاله
پیش نمایش مقاله  بهینه سازی قابلیت نیروی استاتیک از روبات های انسان دوستانه بر مبنای تکامل تکاملی خود سازگار

چکیده انگلیسی

The current society requires solutions for many problems in safety, economy, and health. The social concerns on the high rate of repetitive strain injury, work-related osteomuscular disturbances, and domestic issues involving the elderly and handicapped are some examples. Therefore, studies on complex machines with structures similar to humans, known as humanoids robots, as well as emerging optimization metaheuristics have been increasing. The combination of these technologies may result in robust, safe, reliable, and flexible machines that can substitute humans in multiple tasks. In order to contribute to this topic, the static modeling of a humanoid robot and the optimization of its static force capability through a modified self-adaptive differential evolution (MSaDE) approach is proposed and evaluated in this study. Unlike the original SaDE, MSaDE employs a new combination of strategies and an adaptive scaling factor mechanism. In order to verify the effectiveness of the proposed MSaDE, a series of controlled experiments are performed. Moreover, some statistical tests are applied, an analysis of the results is carried out, and a comparative study of the MSaDE performance with other metaheuristics is presented. The results show that the proposed MSaDE is robust, and its performance is better than other powerful algorithms in the literature when applied to a humanoid robot model for the pushing and pulling tasks.