دانلود مقاله ISI انگلیسی شماره 160449
ترجمه فارسی عنوان مقاله

شبکه اعتماد عمیق شبکه اکو-دولتی و کاربرد آن در پیش بینی سری زمانی

عنوان انگلیسی
Deep belief echo-state network and its application to time series prediction
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
160449 2017 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Knowledge-Based Systems, Volume 130, 15 August 2017, Pages 17-29

ترجمه کلمات کلیدی
شبکه اعتقادی درونی، شبکه دولتی اکو ظرفیت حافظه، پیش بینی سری زمانی،
کلمات کلیدی انگلیسی
Deep belief network; Echo state network; Memory capacity; Time series prediction;
پیش نمایش مقاله
پیش نمایش مقاله  شبکه اعتماد عمیق شبکه اکو-دولتی و کاربرد آن در پیش بینی سری زمانی

چکیده انگلیسی

Deep belief network (DBN) has attracted many attentions in time series prediction. However, the DBN-based methods fail to provide favorable prediction results due to the congenital defects of the back-propagation method, such as slow convergence and local optimum. To address the problems, we propose a deep belief echo-state network (DBEN) for time series prediction. In the new architecture, DBN is employed for feature learning in an unsupervised fashion, which can effectively extract hierarchical data features. An innovative regression layer, embedding an echo-state learning mechanism instead of the traditional back-propagation method, is built on top of DBN for supervised prediction. To our best knowledge, this is the first paper that applies the echo state network methodology to deep learning. The resulted model, combining the merits of DBN and ESN, provides a more robust alternative to conventional deep neural networks for the superior prediction capacity. Extensive experimental results show that our DBEN can achieve a significant enhancement in the prediction performance, learning speed, and short-term memory capacity.