دانلود مقاله ISI انگلیسی شماره 161132
ترجمه فارسی عنوان مقاله

اعمال تشخیص خودکار متن مبتنی بر زبان فریبنده به گزارش های پلیس: استخراج الگوهای رفتاری از یک مدل طبقه بندی چند مرحله ای برای درک چگونگی دروغ به پلیس

عنوان انگلیسی
Applying automatic text-based detection of deceptive language to police reports: Extracting behavioral patterns from a multi-step classification model to understand how we lie to the police
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
161132 2018 39 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Knowledge-Based Systems, Volume 149, 1 June 2018, Pages 155-168

ترجمه کلمات کلیدی
تشخیص دروغ، استخراج اطلاعات، پلیس پیش بینی کننده، استخراج دانش مدل، پردازش زبان طبیعی، سیستم های پشتیبانی تصمیم،
کلمات کلیدی انگلیسی
Lie detection; Information extraction; Predictive policing; Model knowledge extraction; Natural language processing; Decision support systems;
پیش نمایش مقاله
پیش نمایش مقاله  اعمال تشخیص خودکار متن مبتنی بر زبان فریبنده به گزارش های پلیس: استخراج الگوهای رفتاری از یک مدل طبقه بندی چند مرحله ای برای درک چگونگی دروغ به پلیس

چکیده انگلیسی

Filing a false police report is a crime that has dire consequences on both the individual and the system. In fact, it may be charged as a misdemeanor or a felony. For the society, a false report results in the loss of police resources and contamination of police databases used to carry out investigations and assessing the risk of crime in a territory. In this research, we present VeriPol, a model for the detection of false robbery reports based solely on their text. This tool, developed in collaboration with the Spanish National Police, combines Natural Language Processing and Machine Learning methods in a decision support system that provides police officers the probability that a given report is false. VeriPol has been tested on more than 1000 reports from 2015 provided by the Spanish National Police. Empirical results show that it is extremely effective in discriminating between false and true reports with a success rate of more than 91%, improving by more than 15% the accuracy of expert police officers on the same dataset. The underlying classification model can be analysed to extract patterns and insights showing how people lie to the police (as well as how to get away with false reporting). In general, the more details provided in the report, the more likely it is to be honest. Finally, a pilot study carried out in June 2017 has demonstrated the usefulness of VeriPol on the field.