دانلود مقاله ISI انگلیسی شماره 27666
ترجمه فارسی عنوان مقاله

تجزیه و تحلیل عملکرد کنترل کننده با معیار LQG به دست آمده تحت شرایط مدار بسته

عنوان انگلیسی
Controller performance analysis with LQG benchmark obtained under closed loop conditions
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
27666 2002 17 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : ISA Transactions, Volume 41, Issue 4, October 2002, Pages 521–537

ترجمه کلمات کلیدی
کنترل ارزیابی عملکرد - معیار - شناسایی فضا - ماتریس فضا - مدل های غیر پارامتری - مدل فضای حالت - شناسایی حلقه بسته -
کلمات کلیدی انگلیسی
Controller performance assessment, LQG benchmark, Subspace identification, Subspace matrices, Nonparametric models, State space model, Closed-loop identification,
پیش نمایش مقاله
پیش نمایش مقاله  تجزیه و تحلیل عملکرد کنترل کننده با معیار LQG به دست آمده تحت شرایط مدار بسته

چکیده انگلیسی

This paper proposes a new method for obtaining a linear quadratic Gaussian (LQG) benchmark in terms of the variances of process input and output from closed-loop data, for assessing the controller performance. LQG benchmark has been proposed in the literature to assess controller performance since the LQG tradeoff curve represents the limit of performance in terms of input and output variances. However, an explicit parametric model is required to calculate the LQG benchmark. In this work, we propose a data driven subspace approach to calculate the LQG benchmark under closed-loop conditions with certain external excitations. The optimal LQG-benchmark variances are obtained directly from the subspace matrices corresponding to the deterministic inputs and the stochastic inputs, which are identified using closed-loop data with setpoint excitation. These variances are used for assessing the controller performance. The method proposed in this paper is applicable to both univariate and multivariate systems. Profit analysis for the implementation of feedforward control to the existing feedback-only control system is also analyzed under the optimal LQG performance framework. The proposed method is illustrated through a simulation example and an application on a pilot scale process.