دانلود مقاله ISI انگلیسی شماره 28318
ترجمه فارسی عنوان مقاله

شبکه های عصبی گرانول: تجزیه و تحلیل عملکرد و کاربرد گرانوله مجدد

عنوان انگلیسی
A granular neural network: Performance analysis and application to re-granulation
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
28318 2013 19 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Approximate Reasoning, Volume 54, Issue 8, October 2013, Pages 1149–1167

ترجمه کلمات کلیدی
- محاسبات گرانول - سیستم های عصبی فازی - شبکه های عصبی - منطق فازی - متغیرهای زبانی - هجز زبانی -
کلمات کلیدی انگلیسی
Granular computing, Neuro-fuzzy systems, Neural networks, Fuzzy logic, Linguistic variables, Linguistic hedges,
پیش نمایش مقاله
پیش نمایش مقاله  شبکه های عصبی گرانول: تجزیه و تحلیل عملکرد و کاربرد گرانوله مجدد

چکیده انگلیسی

The multi-granularity problem is one of the key open problems in Granular Computing. Multiple descriptions of the same phenomena may use very different information granulations, complicating any comparison or synthesis of those descriptions. One method for solving this problem is to transform all observations to a common granulation; however, this granulation must be adequate to capture all important facets of the phenomena. Determining this “natural” granulation could be done by inductively learning and comparing multiple granular representations of the phenomenon, but this requires a dedicated learning architecture. We present the Granular Neural Network, a novel adaptive neural network architecture that employs granular values and operations at the level of individual neurons. The Granular Neural Network is based on the multiplayer perceptron architecture and the backpropagation learning algorithm with momentum. It uses the operations of linguistic arithmetic to manipulate granular connection weights, which are represented by linguistic terms. We test the performance of the Granular Neural Network on three well-known benchmark datasets, and then explore its use in determining the “natural” granularity of a dataset.