دانلود مقاله ISI انگلیسی شماره 44345
ترجمه فارسی عنوان مقاله

فرسایش مشتریان در خرده فروشی: استفاده از رگرسیون تطبیقی چندمتغیره

عنوان انگلیسی
Customer attrition in retailing: An application of Multivariate Adaptive Regression Splines
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
44345 2013 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 40, Issue 16, 15 November 2013, Pages 6225–6232

ترجمه کلمات کلیدی
بازار یابی - مدیریت ارتباط با مشتری - خرده فروشی - تقسیم بندی - رگرسیون لجستیک - رگرسیون تطبیقی چندمتغیره
کلمات کلیدی انگلیسی
Marketing; Customer relationship management; Churn analysis; Retailing; Classification; Logistic regression; Multivariate Adaptive Regression Splines
پیش نمایش مقاله
پیش نمایش مقاله  فرسایش مشتریان در خرده فروشی: استفاده از رگرسیون تطبیقی چندمتغیره

چکیده انگلیسی

The profit resulting from customer relationship is essential to ensure companies viability, so an improvement in customer retention is crucial for competitiveness. As such, companies have recognized the importance of customer centered strategies and consequently customer relationship management (CRM) is often at the core of their strategic plans. In this context, a priori knowledge about the risk of a given customer to mitigate or even end the relationship with the provider is valuable information that allows companies to take preventive measures to avoid defection. This paper proposes a model to predict partial defection, using two classification techniques: Logistic regression and Multivariate Adaptive Regression Splines (MARS). The main objective is to compare the performance of MARS with Logistic regression in modeling customer attrition. This paper considers the general form of Logistic regression and Logistic regression combined with a wrapper feature selection approach, such as stepwise approach. The empirical results showed that MARS performs better than Logistic regression when variable selection procedures are not used. However, MARS loses its superiority when Logistic regression is conducted with stepwise feature selection.