دانلود مقاله ISI انگلیسی شماره 124132
ترجمه فارسی عنوان مقاله

شبکه های عصبی مصنوعی و حافظه طولانی مدت برای فعالیت های انسان مبتنی بر اسکلت و تشخیص حرکت ژست

عنوان انگلیسی
Convolutional Neural Networks and Long Short-Term Memory for skeleton-based human activity and hand gesture recognition
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
124132 2018 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Pattern Recognition, Volume 76, April 2018, Pages 80-94

ترجمه کلمات کلیدی
یادگیری عمیق، شبکه عصبی انعقادی، شبکه عصبی مکرر، حافظه کوتاهمدت، شناسایی فعالیت های انسانی، تشخیص دست ژست، به موقع،
کلمات کلیدی انگلیسی
Deep learning; Convolutional Neural Network; Recurrent neural network; Long Short-Term Memory; Human activity recognition; Hand gesture recognition; Real-time;
پیش نمایش مقاله
پیش نمایش مقاله  شبکه های عصبی مصنوعی و حافظه طولانی مدت برای فعالیت های انسان مبتنی بر اسکلت و تشخیص حرکت ژست

چکیده انگلیسی

In this work, we address human activity and hand gesture recognition problems using 3D data sequences obtained from full-body and hand skeletons, respectively. To this aim, we propose a deep learning-based approach for temporal 3D pose recognition problems based on a combination of a Convolutional Neural Network (CNN) and a Long Short-Term Memory (LSTM) recurrent network. We also present a two-stage training strategy which firstly focuses on CNN training and, secondly, adjusts the full method (CNN+LSTM). Experimental testing demonstrated that our training method obtains better results than a single-stage training strategy. Additionally, we propose a data augmentation method that has also been validated experimentally. Finally, we perform an extensive experimental study on publicly available data benchmarks. The results obtained show how the proposed approach reaches state-of-the-art performance when compared to the methods identified in the literature. The best results were obtained for small datasets, where the proposed data augmentation strategy has greater impact.