دانلود مقاله ISI انگلیسی شماره 155356
ترجمه فارسی عنوان مقاله

منفجر کردن یک معادله هیپربولیک با شدت بالا با ناهمخوانی فوق بحرانی

عنوان انگلیسی
Blow-up of a hyperbolic equation of viscoelasticity with supercritical nonlinearities
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
155356 1979 24 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Differential Equations, Volume 262, Issue 3, 5 February 2017, Pages 1956-1979

پیش نمایش مقاله
پیش نمایش مقاله  منفجر کردن یک معادله هیپربولیک با شدت بالا با ناهمخوانی فوق بحرانی

چکیده انگلیسی

We investigate a hyperbolic PDE, modeling wave propagation in viscoelastic media, under the influence of a linear memory term of Boltzmann type, and a nonlinear damping modeling friction, as well as an energy-amplifying supercritical nonlinear source:{utt−k(0)Δu−∫0∞k′(s)Δu(t−s)ds+|ut|m−1ut=|u|p−1u, in Ω×(0,T),u(x,t)=u0(x,t), in Ω×(−∞,0], where Ω is a bounded domain in R3 with a Dirichlét boundary condition. The relaxation kernel k is monotone decreasing and k(∞)=1. We study blow-up of solutions when the source is stronger than dissipations, i.e., p>max⁡{m,k(0)}, under two different scenarios: first, the total energy is negative, and the second, the total energy is positive with sufficiently large quadratic energy. This manuscript is a follow-up work of the paper [30] in which Hadamard well-posedness of this equation has been established in the finite energy space. The model under consideration features a supercritical source and a linear memory that accounts for the full past history as time goes to −∞, which is distinct from other relevant models studied in the literature which usually involve subcritical sources and a finite-time memory.