دانلود مقاله ISI انگلیسی شماره 155518
ترجمه فارسی عنوان مقاله

تجمع موازی غوطه ور نشده برای مدل های تریلیون سلولی دیجیتالی روی دسکتاپ یا خوشه

عنوان انگلیسی
Parallel non-divergent flow accumulation for trillion cell digital elevation models on desktops or clusters
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
155518 2017 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Environmental Modelling & Software, Volume 92, June 2017, Pages 202-212

پیش نمایش مقاله
پیش نمایش مقاله  تجمع موازی غوطه ور نشده برای مدل های تریلیون سلولی دیجیتالی روی دسکتاپ یا خوشه

چکیده انگلیسی

Continent-scale datasets challenge hydrological algorithms for processing digital elevation models. Flow accumulation is an important input for many such algorithms; here, I parallelize its calculation. The new algorithm works on one or many cores, or multiple machines, and can take advantage of large memories or cope with small ones. Unlike previous parallel algorithms, the new algorithm guarantees a fixed number of memory access and communication events per raster cell. In testing, the new algorithm ran faster and used fewer resources than previous algorithms, exhibiting ∼30% strong and weak scaling efficiencies up to 48 cores and linear scaling across datasets ranging over three orders of magnitude. The largest dataset tested had two trillion (2·1012) cells. With 48 cores, processing required 24 min wall-time (14.5 compute-hours). This test is three orders of magnitude larger than any previously performed in the literature. Complete, well-commented source code and correctness tests are available on Github.