دانلود مقاله ISI انگلیسی شماره 156810
ترجمه فارسی عنوان مقاله

تضعیف حافظه مبتنی بر دستگاه یادگیری افراطی آنلاین است

عنوان انگلیسی
The memory degradation based online sequential extreme learning machine
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
156810 2018 16 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Neurocomputing, Volume 275, 31 January 2018, Pages 2864-2879

ترجمه کلمات کلیدی
یادگیری آنلاین، دستگاه یادگیری شدید فاکتور حافظه، شباهت،
کلمات کلیدی انگلیسی
Online learning; Extreme learning machine; Memory factor; Similarity;
پیش نمایش مقاله
پیش نمایش مقاله  تضعیف حافظه مبتنی بر دستگاه یادگیری افراطی آنلاین است

چکیده انگلیسی

In online learning, the contribution of old samples to a model decreases as time passes, and old samples gradually become invalid. Although the Online Sequential Extreme Learning Machine (OS-ELM) can avoid the repetitive training of old samples, invalid samples are still used, which goes against improving the accuracy of an OS-ELM model. The Online Sequence Extreme Learning Machine with Forgetting Mechanism (FOS-ELM) timely discards invalid samples, but it does not consider the differences among valid samples and then has the limitation on boosting the accuracy and generalization. To solve this issue, the Memory Degradation Based OS-ELM (MDOS-ELM) is proposed in this paper. The MDOS-ELM adjusts the weights of the old and new samples in real time by a self-adaptive memory factor, and simultaneously discards invalid samples. The self-adaptive memory factor is determined by two elements. One is the similarity between the new and old samples, and the other is the prediction errors of the current training samples on the previous model. The performance of the proposed MDOS-ELM is validated on both regression and classification datasets which include an artificial dataset and twenty-two real-world dataset. The results demonstrate that the MDOS-ELM model outperforms the OS-ELM and the FOS-ELM models on the accuracy and generalization.