دانلود مقاله ISI انگلیسی شماره 43864
ترجمه فارسی عنوان مقاله

تجزیه و تحلیل چند بعدی از کیفیت داده ها برای مدیریت ریسک اعتباری: بینش و چالش های جدید

عنوان انگلیسی
A multidimensional analysis of data quality for credit risk management: New insights and challenges
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
43864 2013 16 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information & Management, Volume 50, Issue 1, January 2013, Pages 43–58

ترجمه کلمات کلیدی
کیفیت داده ها - کیفیت اطلاعات - ریسک اعتباری - تعریف داده ها
کلمات کلیدی انگلیسی
Data quality; Information quality; Credit risk; Data definition
پیش نمایش مقاله
پیش نمایش مقاله  تجزیه و تحلیل چند بعدی از کیفیت داده ها برای مدیریت ریسک اعتباری: بینش و چالش های جدید

چکیده انگلیسی

Recent studies have indicated that companies are increasingly experiencing Data Quality (DQ) related problems as more complex data are being collected. To address such problems, the literature suggests the implementation of a Total Data Quality Management Program (TDQM) that should consist of the following phases: DQ definition, measurement, analysis and improvement. As such, this paper performs an empirical study using a questionnaire that was distributed to financial institutions worldwide to identify the most important DQ dimensions, to assess the DQ level of credit risk databases using the identified DQ dimensions, to analyze DQ issues and to suggest improvement actions in a credit risk assessment context. This questionnaire is structured according to the framework of Wang and Strong and incorporates three additional DQ dimensions that were found to be important to the current context (i.e., actionable, alignment and traceable). Additionally, this paper contributes to the literature by developing a scorecard index to assess the DQ level of credit risk databases using the DQ dimensions that were identified as most important. Finally, this study explores the key DQ challenges and causes of DQ problems and suggests improvement actions. The findings from the statistical analysis of the empirical study delineate the nine most important DQ dimensions, which include accuracy and security for assessing the DQ level.