دانلود مقاله ISI انگلیسی شماره 44053
ترجمه فارسی عنوان مقاله

درختان مدل جهانی حساس به هزینه اعمال شده برای پیش بینی شارژ وام

عنوان انگلیسی
Cost-sensitive Global Model Trees applied to loan charge-off forecasting
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
44053 2015 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Decision Support Systems, Volume 74, June 2015, Pages 57–66

ترجمه کلمات کلیدی
رگرسیون حساس به هزینه - درختان مدل - الگوریتم های تکاملی - هزینه های نامتقارن - پیش بینی شارژ وام
کلمات کلیدی انگلیسی
Cost-sensitive regression; Model trees; Evolutionary algorithms; Asymmetric costs; Loan charge-off forecasting
پیش نمایش مقاله
پیش نمایش مقاله  درختان مدل جهانی حساس به هزینه اعمال شده برای پیش بینی شارژ وام

چکیده انگلیسی

Regression learning methods in real world applications often require cost minimization instead of the reduction of various metrics of prediction errors. Currently in the literature, there is a lack of white box solutions that can deal with forecasting problems where under-prediction and over-prediction errors have different consequences. To fill this gap, we introduced the Cost-sensitive Global Model Tree (CGMT), which applies a fitness function that minimizes an average misprediction cost. Proposed specialized genetic operators improve searching for optimal tree structure and cost-sensitive linear regression models in the leaves. Experimental validation is performed on loan charge-off data. It is known to be a difficult forecasting problem for banks due to the asymmetric cost structure. Obtained results show that specialized evolutionary algorithm applied to model tree induction finds significantly more accurate predictions than tested competitors. Decisions generated by the CGMT are simple, easy to interpret, and can be applied directly.