دانلود مقاله ISI انگلیسی شماره 83680
ترجمه فارسی عنوان مقاله

یادگیری فعال مبتنی بر دسته: کاربرد در داده های رسانه های اجتماعی برای مدیریت بحران

عنوان انگلیسی
Batch-based active learning: Application to social media data for crisis management
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
83680 2018 43 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 93, 1 March 2018, Pages 232-244

ترجمه کلمات کلیدی
یادگیری آنلاین، یادگیری فعال، طبقه بندی، رسانه های اجتماعی، مدیریت بحران،
کلمات کلیدی انگلیسی
Online learning; Active learning; Classification; Social media; Crisis management;
پیش نمایش مقاله
پیش نمایش مقاله  یادگیری فعال مبتنی بر دسته: کاربرد در داده های رسانه های اجتماعی برای مدیریت بحران

چکیده انگلیسی

Classification of evolving data streams is a challenging task, which is suitably tackled with online learning approaches. Data is processed instantly requiring the learning machinery to (self-)adapt by adjusting its model. However for high velocity streams, it is usually difficult to obtain labeled samples to train the classification model. Hence, we propose a novel online batch-based active learning algorithm (OBAL) to perform the labeling. OBAL is developed for crisis management applications where data streams are generated by the social media community. OBAL is applied to discriminate relevant from irrelevant social media items. An emergency management user will be interactively queried to label chosen items. OBAL exploits the boundary items for which it is highly uncertain about their class and makes use of two classifiers: k-Nearest Neighbors (kNN) and Support Vector Machine (SVM). OBAL is equipped with a labeling budget and a set of uncertainty strategies to identify the items for labeling. An extensive analysis is carried out to show OBAL’s performance, the sensitivity of its parameters, and the contribution of the individual uncertainty strategies. Two types of datasets are used: synthetic and social media datasets related to crises. The empirical results illustrate that OBAL has a very good discrimination power.