دانلود مقاله ISI انگلیسی شماره 83788
ترجمه فارسی عنوان مقاله

مدل جریان گاز برای دفن زباله های لایه ای با چاه های استخراج عمودی

عنوان انگلیسی
A gas flow model for layered landfills with vertical extraction wells
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
83788 2017 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Waste Management, Volume 66, August 2017, Pages 103-113

ترجمه کلمات کلیدی
دفن زباله های لایه ای، چاه های عمودی، تکنیک های تحلیلی، تجزیه و تحلیل بدون ابعاد، ادغام متغیرها،
کلمات کلیدی انگلیسی
Layered landfill; Vertical wells; Analytical techniques; Dimensionless analysis; Integration of variables;
پیش نمایش مقاله
پیش نمایش مقاله  مدل جریان گاز برای دفن زباله های لایه ای با چاه های استخراج عمودی

چکیده انگلیسی

This paper developed a two-dimensional axisymmetric analytical model for layered landfills with vertical wells. The model uses a horizontal layered structure to describe the waste non-homogeneity with depth in gas generation, permeability and temperature. The governing equations in the cylindrical coordinate system were transformed to dimensionless forms and solved using a method of eigenfunction expansion. After verification, the effects of different well boundary conditions and gas extraction systems on recovery efficiency were investigated. A dimensionless double-layer system, consisting of a cover and a waste layer, was also explored. The results show that a constant vacuum pressure boundary condition can be enough to describe a perforated pipe surrounded by drainage gravel with a reasonable value of well radius, such as half the radius of gravel fill. Also, the 7 independent variables (one marked with an asterisk is dimensionless) of a double-layer system can be integrated into 3 dimensionless ones: Cover permeability Kv1∗/(Vertical gas permeability of waste Kv2∗ × Cover thickness h1∗), − Vacuum pressure pw × PatmKv2∗/(μRgT2 × Gas generation rate of waste s2) and ln(Well radius rw∗)/(Anisotropy degree of waste k2∗). The integration is based on the inherent mechanism of this flow system with certain simplification. The effects of these variables are then quantitatively characterized for a better understanding of gas recovery efficiency. Same recovery efficiency can be achieved with different variable combinations. For example, increasing h1∗ (such as doubling it) has the same effect with decreasing Kv1∗ (such as halving it). Along with the reduction of variables by half, the integration can facilitate the preliminary design, and is a small but important advance in the consideration of MSW non-homogeneity.