دانلود مقاله ISI انگلیسی شماره 44256
ترجمه فارسی عنوان مقاله

آنالیز خوشه ای با استفاده از الگوریتم بهینه سازی با توابع عینی تازه طراحی شده

عنوان انگلیسی
Cluster analysis using optimization algorithms with newly designed objective functions
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
44256 2015 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 42, Issue 14, 15 August 2015, Pages 5848–5859

ترجمه کلمات کلیدی
خوشه بندی - بهینه سازی - الگوریتم ژنتیک (GA) - جستجوی فاخته (CS) - بهینه سازی ازدحام ذرات (PSO) -
کلمات کلیدی انگلیسی
Clustering; Optimization; Genetic algorithm (GA); Cuckoo search (CS); Particle swarm optimization (PSO); Kernel space
پیش نمایش مقاله
پیش نمایش مقاله  آنالیز خوشه ای با استفاده از الگوریتم بهینه سازی با توابع عینی تازه طراحی شده

چکیده انگلیسی

Clustering finds various applications in the field of medical and telecommunication for unsupervised learning which is much required in expert system and its application. Various algorithms have been developed to clustering for the past fifty years after the introduction of k-means clustering. Recently, optimization algorithms are applied for clustering to find optimal clusters with the help of different objective functions. Accordingly, in this research, clustering is performed using three newly designed objective functions along with four existing objective functions with the help of optimization algorithms like, genetic algorithm, cuckoo search and particle swarm optimization algorithm. Here, three different objective functions are designed including the cumulative summation of fuzzy membership and distance value with normal data space, kernel space as well as multiple kernel space. In addition to the existing seven objective functions, totally, 21 different clustering algorithms are discussed and the performance is validated with 16 different datasets which are synthetic, small and large scale real data. The comparison is made with five different evaluation metrics to validate the effectiveness and efficiency. From the research outcome, the suggestion is presented to select a suitable algorithm among 21 algorithms for a particular data and results proved that the effectiveness of cluster analysis is mainly dependent on objective function and the efficiency of cluster analysis is based on search algorithm.