دانلود مقاله ISI انگلیسی شماره 44308
ترجمه فارسی عنوان مقاله

یک الگوریتم بهینه سازی بهبودیافته مگس میوه و کاربرد آن در مشکلات بازپرسازی مشترک

عنوان انگلیسی
An improved fruit fly optimization algorithm and its application to joint replenishment problems
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
44308 2015 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 42, Issue 9, 1 June 2015, Pages 4310–4323

ترجمه کلمات کلیدی
الگوریتم بهینه سازی مگس میوه - ازدحام همکاری - اغتشاش تصادفی - بهینه سازی عملکرد - مشکل بازپرسازی مشترک
کلمات کلیدی انگلیسی
Fruit fly optimization algorithm; Swarm collaboration; Random perturbation; Function optimization; Joint replenishment problem
پیش نمایش مقاله
پیش نمایش مقاله  یک الگوریتم بهینه سازی بهبودیافته مگس میوه و کاربرد آن در مشکلات بازپرسازی مشترک

چکیده انگلیسی

Fruit fly optimization algorithm (FOA) is one of the recent evolutionary computation approaches. This paper presents an effective and improved FOA (IFOA) for optimizing numerical functions and solving joint replenishment problems (JRPs). In the proposed IFOA, a new method of maintaining the population diversity is developed to enhance the exploration ability. Fruit flies with better fitness values use vision to fly toward a new location, and the others fly randomly in initial search space based on swarm collaboration. In addition, a new parameter to avoid the acquisition of local optimal solution is introduced to implement intelligent searching. Random perturbation is added to the updated initial location to jump out of the local optimum. Comparisons are carried out using 18 benchmark functions to verify the performance of the IFOA. Experimental results show that IFOA has better comprehensive performance than the original FOA, differential evolution algorithm, and particle swarm optimization algorithm. The IFOA is also utilized to solve the typical JRPs that have been proven as non-deterministic polynomial hard problems. Comparative examples reveal that the proposed IFOA can find better solutions than the current best algorithm; thus, it is a potential tool for various complex optimization problems.