دانلود مقاله ISI انگلیسی شماره 52297
ترجمه فارسی عنوان مقاله

پیشگیری از برنامه نرمافزاری برنامه ریزی منابع سازمانی با استفاده از مدل استنتاج ماشین بردار پشتیبانی از تکامل

عنوان انگلیسی
Forecasting enterprise resource planning software effort using evolutionary support vector machine inference model
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
52297 2012 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Project Management, Volume 30, Issue 8, November 2012, Pages 967–977

ترجمه کلمات کلیدی
برنامه ریزی منابع سازمانی، پیش بینی نرم افزار، مدیریت پروژه، هوش هیبرید
کلمات کلیدی انگلیسی
Enterprise resource planning; Software effort prediction; Project management; Hybrid intelligence

چکیده انگلیسی

Despite significant advances in procedures that facilitate project management, the continued reliance of software managers on guesswork and subjective judgment causes frequent project time overruns. This study uses an Evolutionary Support Vector Machine Inference Model (ESIM) for efficiently and accurately estimating the person-hour of ERP system development projects. The proposed ESIM is a hybrid intelligence model integrating a support vector machine (SVM) with a fast messy genetic algorithm (fmGA). The SVM mainly provides learning and curve fitting while the fmGA minimizes errors. The analytical results in this study confirm that, compared to artificial neural networks and SVM, the proposed ESIM provides preliminary prediction at early phase of ERP software development effort for the manufacturing firms with superior accuracy, shorter training time and less overfitting. Future research can develop user-friendly expert systems with window or browser interfaces that can be used by planning personnel to flexibly input related variables and to estimate development effort and corresponding project time/cost.