دانلود مقاله ISI انگلیسی شماره 83828
ترجمه فارسی عنوان مقاله

مدل های سیگما بخش به دو دسته تقسیم شده دوبعدی مختلط بر چهار منیفولد لورنتسی است

عنوان انگلیسی
Section sigma models coupled to symplectic duality bundles on Lorentzian four-manifolds
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
83828 2018 34 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Geometry and Physics, Volume 128, June 2018, Pages 58-86

پیش نمایش مقاله
پیش نمایش مقاله  مدل های سیگما بخش به دو دسته تقسیم شده دوبعدی مختلط بر چهار منیفولد لورنتسی است

چکیده انگلیسی

We give the global mathematical formulation of a class of generalized four-dimensional theories of gravity coupled to scalar matter and to Abelian gauge fields. In such theories, the scalar fields are described by a section of a surjective pseudo-Riemannian submersion π over space–time, whose total space carries a Lorentzian metric making the fibers into totally-geodesic connected Riemannian submanifolds. In particular, π is a fiber bundle endowed with a complete Ehresmann connection whose transport acts through isometries between the fibers. In turn, the Abelian gauge fields are “twisted” by a flat symplectic vector bundle defined over the total space of π. This vector bundle is endowed with a vertical taming which locally encodes the gauge couplings and theta angles of the theory and gives rise to the notion of twisted self-duality, of crucial importance to construct the theory. When the Ehresmann connection of π is integrable, we show that our theories are locally equivalent to ordinary Einstein-Scalar-Maxwell theories and hence provide a global non-trivial extension of the universal bosonic sector of four-dimensional supergravity. In this case, we show using a special trivializing atlas of π that global solutions of such models can be interpreted as classical “locally-geometric” U-folds. In the non-integrable case, our theories differ locally from ordinary Einstein-Scalar-Maxwell theories and may provide a geometric description of classical U-folds which are “locally non-geometric”.