دانلود مقاله ISI انگلیسی شماره 84471
ترجمه فارسی عنوان مقاله

یک مدل محاسباتی فازی برای احساسات برای تحلیل احساسات ابر

عنوان انگلیسی
A fuzzy computational model of emotion for cloud based sentiment analysis
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
84471 2018 41 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Sciences, Volumes 433–434, April 2018, Pages 448-463

ترجمه کلمات کلیدی
ابر ترکیبی، اطلاعات بزرگ، مدل سازی احساسی، محاسبات عاطفی، سیستم های فازی سازگار، تجزیه و تحلیل احساسات شبکه،
کلمات کلیدی انگلیسی
Hybrid cloud; Big data; Emotion modeling; Affective computing; Adaptive fuzzy systems; Social network sentiment analysis;
پیش نمایش مقاله
پیش نمایش مقاله  یک مدل محاسباتی فازی برای احساسات برای تحلیل احساسات ابر

چکیده انگلیسی

This paper presents a novel emotion modeling methodology for incorporating human emotion into intelligent computer systems. The proposed approach includes a method to elicit emotion information from users, a new representation of emotion (AV-AT model) that is modelled using a genetically optimized adaptive fuzzy logic technique, and a framework for predicting and tracking user’s affective trajectory over time. The fuzzy technique is evaluated in terms of its ability to model affective states in comparison to other existing machine learning approaches. The performance of the proposed affect modeling methodology is tested through the deployment of a personalised learning system, and series of offline and online experiments. A hybrid cloud intelligence infrastructure is used to conduct large-scale experiments to analyze user sentiments and associated emotions, using data from a million Facebook users. A performance analysis of the infrastructure on processing, analyzing, and data storage has been carried out, illustrating its viability for large-scale data processing tasks. A comparison of the proposed emotion categorizing approach with Facebook’s sentiment analysis API demonstrates that our approach can achieve comparable performance. Finally, discussions on research contributions to cloud intelligence using sentiment analysis, emotion modeling, big data, and comparisons with other approaches are presented in detail.