دانلود مقاله ISI انگلیسی شماره 89901
ترجمه فارسی عنوان مقاله

بهینه ساز گرگ خاکستری با ساختار توپولوژیکی سلولی

عنوان انگلیسی
Grey wolf optimizer with cellular topological structure
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
89901 2018 45 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 107, 1 October 2018, Pages 89-114

ترجمه کلمات کلیدی
بهینه ساز گرگ خاکستری اتوماتای ​​سلولی، متهوریستی، بهینه سازی مهندسی، بهینه سازی جهانی،
کلمات کلیدی انگلیسی
Grey wolf optimizer; Cellular automata; Metaheuristics; Engineering optimization; Global optimization;
پیش نمایش مقاله
پیش نمایش مقاله  بهینه ساز گرگ خاکستری با ساختار توپولوژیکی سلولی

چکیده انگلیسی

Grey wolf optimizer (GWO) is a newly developed metaheuristic inspired by hunting mechanism of grey wolves. The paramount challenge in GWO is that it is prone to stagnation in local optima. This paper proposes a cellular grey wolf optimizer with a topological structure (CGWO). The proposed CGWO has two characteristics. Firstly, each wolf has its own topological neighbors, and interactions among wolves are restricted to their neighbors, which favors exploitation of CGWO. Secondly, information diffusion mechanism by overlap among neighbors can allow to maintain the population diversity for longer, usually contributing to exploration. Empirical studies are conducted to compare the proposed algorithm with different metaheuristics such as success-history based adaptive differential evolution with linear population size reduction (LSHADE), teaching-learning based optimization algorithm (TLBO), effective butterfly optimizer with covariance matrix adapted retreat phase (EBOwithCMAR), novel dynamic harmony search (NDHS), bat-inspired algorithm (BA), comprehensive learning particle swarm optimizer (CLPSO), evolutionary algorithm based on decomposition (EAD), ring topology PSO (RPSO), crowding-based differential evolution (CDE), neighborhood based crowding differential evolution (NCDE), locally informed particle swarm (LIPS), some improved variants of GWO and GWO. Experimental results show that the proposed method performs better than the other algorithms on most benchmarks and engineering problems.