دانلود مقاله ISI انگلیسی شماره 89910
ترجمه فارسی عنوان مقاله

الهام بخش بهینه ساز گرگ خاکستری برای حل مشکلات بهینه سازی عملکرد در مقیاس بزرگ

عنوان انگلیسی
Inspired grey wolf optimizer for solving large-scale function optimization problems
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
89910 2018 19 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Mathematical Modelling, Volume 60, August 2018, Pages 112-126

ترجمه کلمات کلیدی
بهینه ساز گرگ خاکستری بهینه سازی جهانی در مقیاس بزرگ، بهینه سازی طراحی مهندسی، پیش بینی بار الکتریکی،
کلمات کلیدی انگلیسی
Grey wolf optimizer; Large-scale global optimization; Engineering design optimization; Electricity load forecasting;
پیش نمایش مقاله
پیش نمایش مقاله  الهام بخش بهینه ساز گرگ خاکستری برای حل مشکلات بهینه سازی عملکرد در مقیاس بزرگ

چکیده انگلیسی

Grey wolf optimizer algorithm was recently presented as a new heuristic search algorithm with satisfactory results in real-valued and binary encoded optimization problems that are categorized in swarm intelligence optimization techniques. This algorithm is more effective than some conventional population-based algorithms, such as particle swarm optimization, differential evolution and gravitational search algorithm. Some grey wolf optimizer variants were developed by researchers to improve the performance of the basic grey wolf optimizer algorithm. Inspired by particle swarm optimization algorithm, this study investigates the performance of a new algorithm called Inspired grey wolf optimizer which extends the original grey wolf optimizer by adding two features, namely, a nonlinear adjustment strategy of the control parameter, and a modified position-updating equation based on the personal historical best position and the global best position. Experiments are performed on four classical high-dimensional benchmark functions, four test functions proposed in the IEEE Congress on Evolutionary Computation 2005 special session, three well-known engineering design problems, and one real-world problem. The results show that the proposed algorithm can find more accurate solutions and has higher convergence rate and less number of fitness function evaluations than the other compared techniques.