دانلود مقاله ISI انگلیسی شماره 89912
ترجمه فارسی عنوان مقاله

بهینه سازی مبتنی بر یادگیری مبتنی بر درونگیری دو بعدی برای بهینه سازی سیستم پویایی شیمیایی

عنوان انگلیسی
Quadratic interpolation based teaching-learning-based optimization for chemical dynamic system optimization
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
89912 2018 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Knowledge-Based Systems, Volume 145, 1 April 2018, Pages 250-263

ترجمه کلمات کلیدی
بهینه سازی سیستم پویا، فرآیندهای شیمیایی، بهینه سازی جهانی، بهینه سازی آموزش مبتنی بر یادگیری، تداخل مربعی
کلمات کلیدی انگلیسی
Dynamic system optimization; Chemical processes; Global optimization; Teaching-learning-based optimization; Quadratic interpolation;
پیش نمایش مقاله
پیش نمایش مقاله  بهینه سازی مبتنی بر یادگیری مبتنی بر درونگیری دو بعدی برای بهینه سازی سیستم پویایی شیمیایی

چکیده انگلیسی

Optimal design and control of industrially important chemical processes rely on dynamic optimization. However, because of the highly constrained, nonlinear, and sometimes discontinuous nature that is inherent in chemical processes, solving dynamic optimization problems (DOPs) is still a challenging task. Teaching-learning-based optimization (TLBO) is a relative new metaheuristic algorithm based on the philosophy of teaching and learning. In this paper, we propose an improved TLBO called quadratic interpolation based TLBO (QITLBO) for handling DOPs efficiently. In the QITLBO, two modifications, namely diversity enhanced teaching strategy and quadratic interpolation operator, are introduced into the basic TLBO. The diversity enhanced teaching strategy is employed to improve the exploration ability, and the quadratic interpolation operator is used to enhance the exploitation ability; therefore, the ensemble of these two components can establish a better balance between exploration and exploitation. To test the performance of the proposed method, QITLBO is applied to solve six chemical DOPs include three parameter estimation problems and three optimal control problems, and compared with eleven well-established metaheuristic algorithms. Computational results reveal that QITLBO has the best precision and reliability among the compared algorithms for most of the test problems.