دانلود مقاله ISI انگلیسی شماره 89954
ترجمه فارسی عنوان مقاله

الگوریتم بهینه سازی ذرات ترکیبی با استفاده از استراتژی یادگیری سازگار

عنوان انگلیسی
A hybrid particle swarm optimization algorithm using adaptive learning strategy
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
89954 2018 31 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Sciences, Volumes 436–437, April 2018, Pages 162-177

ترجمه کلمات کلیدی
بهینه سازی ذرات ذرات، استراتژی یادگیری، جهت جستجوی، بهینه سازی چندجملهای،
کلمات کلیدی انگلیسی
Particle swarm optimization; Learning strategy; Search direction; Multimodal optimization;
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم بهینه سازی ذرات ترکیبی با استفاده از استراتژی یادگیری سازگار

چکیده انگلیسی

Many optimization problems in reality have become more and more complex, which promote the research on the improvement of different optimization algorithms. The particle swarm optimization (PSO) algorithm has been proved to be an effective tool to solve various kinds of optimization problems. However, for the basic PSO, the updating strategy is mainly aims to learn the global best, and it often suffers premature convergence as well as performs poorly on many complex optimization problems, especially for multimodal problems. A hybrid PSO algorithm which employs an adaptive learning strategy (ALPSO) is developed in this paper. In ALPSO, we employ a self-learning based candidate generation strategy to ensure the exploration ability, and a competitive learning based prediction strategy to guarantee exploitation of the algorithm. To balance the exploration ability and the exploitation ability well, we design a tolerance based search direction adjustment mechanism. The experimental results on 40 benchmark test functions demonstrate that, compared with five representative PSO algorithms, ALPSO performs much better than the others in more cases, on both convergence accuracy and convergence speed.