دانلود مقاله ISI انگلیسی شماره 89963
ترجمه فارسی عنوان مقاله

در تجزیه و تحلیل همگرایی الگوریتم بهینه سازی ذرات

عنوان انگلیسی
On convergence analysis of particle swarm optimization algorithm
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
89963 2018 17 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Computational and Applied Mathematics, Volume 333, 1 May 2018, Pages 65-73

ترجمه کلمات کلیدی
بهینه سازی ذرات ذرات، همگرایی، زنجیره مارکوف، تئوری مارتینگال،
کلمات کلیدی انگلیسی
Particle swarm optimization; Convergence; Markov chain; Martingale theory;
پیش نمایش مقاله
پیش نمایش مقاله  در تجزیه و تحلیل همگرایی الگوریتم بهینه سازی ذرات

چکیده انگلیسی

Particle swarm optimization (PSO), a population-based stochastic optimization algorithm, has been successfully used to solve many complicated optimization problems. However analysis on algorithm convergence is still inadequate till now. In this paper, the martingale theory is applied to analyze the convergence of the standard PSO (SPSO). Firstly, the swarm state sequence is defined and its Markov properties are examined according to the theory of SPSO. Two closed sets, the optimal particle state set and optimal swarm state set, are then obtained. Afterwards, a supermartingale is derived as the evolutionary sequence of particle swarm with the best fitness value. Finally, the SPSO convergence analysis is carried out in terms of the supermartingale convergence theorem. Our results show that SPSO reaches the global optimum in probability. Moreover, the analysis on SPSO proves that the quantum-behaved particle swarm optimization (QPSO) is also a global convergence algorithm. The proof of the SPSO convergence in this work is new, simple and more effective without specific implementation.