دانلود مقاله ISI انگلیسی شماره 89980
ترجمه فارسی عنوان مقاله

یک زمان بهینه شده با استفاده از روش تجزیه حالت تجربی با استفاده از روش فیلتر کردن خاکستری بهینه سازی گرگ برای تشخیص خطا در ماشین

عنوان انگلیسی
An optimized time varying filtering based empirical mode decomposition method with grey wolf optimizer for machinery fault diagnosis
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
89980 2018 24 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Sound and Vibration, Volume 418, 31 March 2018, Pages 55-78

پیش نمایش مقاله
پیش نمایش مقاله  یک زمان بهینه شده با استفاده از روش تجزیه حالت تجربی با استفاده از روش فیلتر کردن خاکستری بهینه سازی گرگ برای تشخیص خطا در ماشین

چکیده انگلیسی

A time varying filtering based empirical mode decomposition (EMD) (TVF-EMD) method was proposed recently to solve the mode mixing problem of EMD method. Compared with the classical EMD, TVF-EMD was proven to improve the frequency separation performance and be robust to noise interference. However, the decomposition parameters (i.e., bandwidth threshold and B-spline order) significantly affect the decomposition results of this method. In original TVF-EMD method, the parameter values are assigned in advance, which makes it difficult to achieve satisfactory analysis results. To solve this problem, this paper develops an optimized TVF-EMD method based on grey wolf optimizer (GWO) algorithm for fault diagnosis of rotating machinery. Firstly, a measurement index termed weighted kurtosis index is constructed by using kurtosis index and correlation coefficient. Subsequently, the optimal TVF-EMD parameters that match with the input signal can be obtained by GWO algorithm using the maximum weighted kurtosis index as objective function. Finally, fault features can be extracted by analyzing the sensitive intrinsic mode function (IMF) owning the maximum weighted kurtosis index. Simulations and comparisons highlight the performance of TVF-EMD method for signal decomposition, and meanwhile verify the fact that bandwidth threshold and B-spline order are critical to the decomposition results. Two case studies on rotating machinery fault diagnosis demonstrate the effectiveness and advantages of the proposed method.