دانلود مقاله ISI انگلیسی شماره 98864
ترجمه فارسی عنوان مقاله

مزایای بهره وری از سیستم فتوولتائیک با استفاده از ذخیره انرژی حرارتی بسته شده

عنوان انگلیسی
Efficiency Gains of Photovoltaic System Using Latent Heat Thermal Energy Storage
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
98864 2017 6 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Energy Procedia, Volume 110, March 2017, Pages 83-88

ترجمه کلمات کلیدی
تبدیل انرژی، بهره وری سلولی، خنک کننده منفعل مواد تغییر فاز،
کلمات کلیدی انگلیسی
Energy conversion; cell efficiency gains; passive cooling; phase change material;
پیش نمایش مقاله
پیش نمایش مقاله  مزایای بهره وری از سیستم فتوولتائیک با استفاده از ذخیره انرژی حرارتی بسته شده

چکیده انگلیسی

This paper presents experimental assessments of the thermal and electrical performance of photovoltaic (PV) system by comparing the latent heat-cooled PV panel with the naturally-cooled equivalent. It is commonly known that the energy conversion efficiency of the PV cells declines with the increment of the PV cell temperature, at a typical value of 0.5%/K. Instead of exploring new semi-conducting materials to reduce the temperature-dependent effect, passive cell cooling is an alternative way to improve the PV power outputs. In the experiment, latent heat thermal energy storage was coupled to the rear side of the PV panel to achieve cell cooling passively. The phase change material (PCM) filled in the thermal storage containment (PCMTS) was organic based paraffin wax which has low melting point of 27 ̊C and high latent heat capacity of 184 kJ/kg. To overcome the poor thermal conductivity of the PCM, metallic fins were incorporated in the LHTES to increase the melting rate of the PCM. In addition, studies of the heat transfer performance using different numbers of metallic fins in heat enhanced PCMTS are compared and analysed. The experimental results show that the finned latent heat-cooled PV panel was able to reduce the panel temperature by 15 ̊C compared to the naturally-cooled PV panel. The maximum electrical conversion efficiency improvement of 5.39% was achieved by the proposed passive cooling approach.