دانلود مقاله ISI انگلیسی شماره 118746
ترجمه فارسی عنوان مقاله

پیش بینی سرعت باد با استفاده از گروه یادگیری غیرخطی از پیش بینی سری زمانی یادگیری عمیق و بهینه سازی شدید

عنوان انگلیسی
Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
118746 2018 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Energy Conversion and Management, Volume 165, 1 June 2018, Pages 681-695

پیش نمایش مقاله
پیش نمایش مقاله  پیش بینی سرعت باد با استفاده از گروه یادگیری غیرخطی از پیش بینی سری زمانی یادگیری عمیق و بهینه سازی شدید

چکیده انگلیسی

As an essential issue in wind energy industry, wind speed forecasting plays a vital role in optimal scheduling and control of wind energy generation and conversion. In this paper, a novel method called EnsemLSTM is proposed by using nonlinear-learning ensemble of deep learning time series prediction based on LSTMs (Long Short Term Memory neural networks), SVRM (support vector regression machine) and EO (extremal optimization algorithm). First, in order to avert the drawback of weak generalization capability and robustness of a single deep learning approach when facing diversiform data, a cluster of LSTMs with diverse hidden layers and neurons are employed to explore and exploit the implicit information of wind speed time series. Then predictions of LSTMs are aggregated into a nonlinear-learning regression top-layer composed of SVRM and the EO is introduced to optimize the parameters of the top-layer. Lastly, the final ensemble prediction for wind speed is given by the fine-turning top-layer. The proposed EnsemLSTM is applied on two case studies data collected from a wind farm in Inner Mongolia, China, to perform ten-minute ahead utmost short term wind speed forecasting and one-hour ahead short term wind speed forecasting. Statistical tests of experimental results compared with other popular prediction models demonstrated the proposed EnsemLSTM can achieve a better forecasting performance.