دانلود مقاله ISI انگلیسی شماره 118785
ترجمه فارسی عنوان مقاله

نقشه های آنلاین انعطاف پذیر

عنوان انگلیسی
Sparse online feature maps
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
118785 2018 33 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Knowledge-Based Systems, Available online 17 March 2018

ترجمه کلمات کلیدی
نقشه ویژگی برجسته، روشهای هسته ای، یکپارچه سازی آنلاین آموزش، فرآیند متعامد گرام اشمیت،
کلمات کلیدی انگلیسی
Explicit feature map; Kernel methods; Single-pass online learning; Gram-Schmidt orthogonalization process;
پیش نمایش مقاله
پیش نمایش مقاله  نقشه های آنلاین انعطاف پذیر

چکیده انگلیسی

Online kernel methods suffer from computational and memory complexity in large-scale problems. Due to these drawbacks, budget online kernel learning and kernel approximation (low-dimensional feature map approximation) methods are widely used to speed up time and to reduce memory usage of kernel approaches. In this paper, orthogonal Gram-Schmidt explicit feature maps are applied to online kernel methods. The main advantage of these feature maps come from their orthogonality property. Utilization of these feature maps leads to mutually linearly independent dimensions of feature space, hence, reduce the redundancy in this space. These feature maps can be applied to single-pass online learning methods with l2- and l0-norm regularization to reduce the computational and memory complexity. In this paper, the proposed methods are named: 1) Online Feature Maps (OFEMs) and 2) Sparse Online Feature Maps (SOFEMs). These methods are examined for binary and multiclass single-label classification problems. Extensive experiments are compared with the results of other state-of-the-art methods on standard and real-world datasets. The experimental results show that OFEMs and SOFEMs outperform other methods in the literature.