دانلود مقاله ISI انگلیسی شماره 118808
ترجمه فارسی عنوان مقاله

مقیاس های انسداد تانسور کارآمد برای محاسبات خوشه های جانبی با استفاده از چندین مدل برنامه ریزی مدل

عنوان انگلیسی
Cross-scale efficient tensor contractions for coupled cluster computations through multiple programming model backends
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
118808 2017 31 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Parallel and Distributed Computing, Volume 106, August 2017, Pages 92-105

پیش نمایش مقاله
پیش نمایش مقاله  مقیاس های انسداد تانسور کارآمد برای محاسبات خوشه های جانبی با استفاده از چندین مدل برنامه ریزی مدل

چکیده انگلیسی

Coupled-cluster methods provide highly accurate models of molecular structure through explicit numerical calculation of tensors representing the correlation between electrons. These calculations are dominated by a sequence of tensor contractions, motivating the development of numerical libraries for such operations. While based on matrix–matrix multiplication, these libraries are specialized to exploit symmetries in the molecular structure and in electronic interactions, and thus reduce the size of the tensor representation and the complexity of contractions. The resulting algorithms are irregular and their parallelization has been previously achieved via the use of dynamic scheduling or specialized data decompositions. We introduce our efforts to extend the Libtensor framework to work in the distributed memory environment in a scalable and energy-efficient manner. We achieve up to 240× speedup compared with the optimized shared memory implementation of Libtensor. We attain scalability to hundreds of thousands of compute cores on three distributed-memory architectures (Cray XC30 and XC40, and IBM Blue Gene/Q), and on a heterogeneous GPU-CPU system (Cray XK7). As the bottlenecks shift from being compute-bound DGEMM’s to communication-bound collectives as the size of the molecular system scales, we adopt two radically different parallelization approaches for handling load-imbalance, tasking and bulk synchronous models. Nevertheless, we preserve a unified interface to both programming models to maintain the productivity of computational quantum chemists.