دانلود مقاله ISI انگلیسی شماره 71380
ترجمه فارسی عنوان مقاله

روش تجزیه و تحلیل مفهوم رسمی برای ویژگی های شناختی حافظه انجمنی دو طرفه

عنوان انگلیسی
Formal concept analysis approach to cognitive functionalities of bidirectional associative memory ☆
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
71380 2015 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Biologically Inspired Cognitive Architectures, Volume 12, April 2015, Pages 20–33

ترجمه کلمات کلیدی
حافظه های انجمنی؛ شناخت؛ سلسله مراتب مفهومی؛ شبکه مفهوم؛ تجزیه و تحلیل مفهوم رسمی؛ ارتباط الگوی
کلمات کلیدی انگلیسی
Associative memories; Cognition; Concept hierarchy; Concept lattice; Formal concept analysis; Pattern association
پیش نمایش مقاله
پیش نمایش مقاله  روش تجزیه و تحلیل مفهوم رسمی برای ویژگی های شناختی حافظه انجمنی دو طرفه

چکیده انگلیسی

Pattern association is one among the ways through which human brain stores and recalls information. From the literature, it is evident that cognitive abilities of human brain such as learning, memorizing, recalling and updating of information are performed via concepts and their connections. In this work we have made use of Formal Concept Analysis (FCA), a mathematical framework for data and knowledge processing, to represent memories and to perform some of the cognitive functions of human brain. In particular, we model the functionalities of bidirectional associative memories. The proposed model can learn, memorize the learnt information, bi-directionally recall the information that is associated with the presented cue with the help of object-attribute relations that exists in the scenario and update the knowledge when there is a change in the considered scenario. Also when a noisy cue is given, the model is capable of recalling the most closely associated pattern by exploiting the concept hierarchy principle of FCA. Similarly, when a new information is presented on a learnt scenario, the proposed model can update its knowledge by avoiding the need to re-learn scenario. We illustrate the proposed model with a case study and validate with experiments on few real world datasets.