دانلود مقاله ISI انگلیسی شماره 88371
ترجمه فارسی عنوان مقاله

ارزیابی آسیب پذیری های شبکۀ شبکه ای که از بارهای تصادفی و غیر دقیق مدل محاسبه می شود

عنوان انگلیسی
Assessment of power grid vulnerabilities accounting for stochastic loads and model imprecision
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
88371 2018 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Electrical Power & Energy Systems, Volume 98, June 2018, Pages 219-232

ترجمه کلمات کلیدی
ارزیابی آسیب پذیری، رتبه بندی احتمالی، شبکه برق، عدم قطعیت، خرابی های آبشاری بیش از حد، معیارهای گراف طیفی،
کلمات کلیدی انگلیسی
Vulnerability assessment; Contingency ranking; Power grid; Uncertainty; Overload cascading failures; Spectral graph metrics;
پیش نمایش مقاله
پیش نمایش مقاله  ارزیابی آسیب پذیری های شبکۀ شبکه ای که از بارهای تصادفی و غیر دقیق مدل محاسبه می شود

چکیده انگلیسی

Vulnerability and robustness are major concerns for future power grids. Malicious attacks and extreme weather conditions have the potential to trigger multiple components outages, cascading failures and large blackouts. Robust contingency identification procedures are necessary to improve power grids resilience and identify critical scenarios. This paper proposes a framework for advanced uncertainty quantification and vulnerability assessment of power grids. The framework allows critical failure scenarios to be identified and overcomes the limitations of current approaches by explicitly considering aleatory and epistemic sources of uncertainty modelled using probability boxes. The different effects of stochastic fluctuation of the power demand, imprecision in power grid parameters and uncertainty in the selection of the vulnerability model have been quantified. Spectral graph metrics for vulnerability are computed using different weights and are compared to power-flow-based cascading indices in ranking N-1 line failures and random N-k lines attacks. A rank correlation test is proposed for further comparison of the vulnerability metrics. The IEEE 24 nodes reliability test power network is selected as a representative case study and a detailed discussion of the results and findings is presented.