دانلود مقاله ISI انگلیسی شماره 88400
ترجمه فارسی عنوان مقاله

برنامه ریزی انرژی و رزرو تحت ابهام در توزیع احتمال احتمالی

عنوان انگلیسی
Energy and reserve scheduling under ambiguity on renewable probability distribution
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
88400 2018 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Electric Power Systems Research, Volume 160, July 2018, Pages 205-218

ترجمه کلمات کلیدی
بی نظمی، نسل ستون و محدود، ارزش افزوده مشروط، برنامه ریزی انرژی / رزرو معیار امنیتی، انرژی تجدید پذیر،
کلمات کلیدی انگلیسی
Ambiguity; Column-and-constraint generation; Conditional value-at-risk; Energy/reserve scheduling; Security criterion; Renewable energy;
پیش نمایش مقاله
پیش نمایش مقاله  برنامه ریزی انرژی و رزرو تحت ابهام در توزیع احتمال احتمالی

چکیده انگلیسی

This paper presents a novel methodology to devise a least-cost energy and reserve scheduling under uncertainty in renewable energy sources (RES) and equipment outages. The uncertainty in renewable production is accounted for by exogenously simulated scenarios, as customary in stochastic programming, whereas outages of generators and/or transmission lines are addressed via adjustable robust optimization. The precise characterization of the RES output by means of a unique probability distribution is a challenging task. Hence, we provide a general formulation that allows the consideration of a set of “credible” probability distributions. In this manner, the system operator's ambiguity aversion to uncertainty in renewable production is accounted for. Our proposed methodology determines the least-cost energy and reserve scheduling through a three-level model. Structurally, the upper level defines a least-cost scheduling and, under uncertainty in renewable production, the middle level identifies the worst contingency for the given operating point. The lower level then utilizes the scheduling provided by the upper-level to determine the best redispatch. In order to control the system equilibrium, we adapt risk constraint techniques to handle the system imbalance uncertainty and ensure a reliable operating level. To solve the multi-level problem, we propose an algorithm that combines Benders decomposition and column-and-constraint generation techniques to approximate the risk measure while scheduling power and reserves. The effectiveness of the proposed model and the importance of considering ambiguity are demonstrated through a case study with real data from the Great Britain power system network.