دانلود مقاله ISI انگلیسی شماره 88430
ترجمه فارسی عنوان مقاله

پیش بینی های برنامه ریزی تقاضای برق باید شرایط غیر سازمانی آب و هوا را برای حفظ حاشیه های ذخیره در طول امواج گرمایشی در نظر بگیرند

عنوان انگلیسی
Electricity demand planning forecasts should consider climate non-stationarity to maintain reserve margins during heat waves
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
88430 2017 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Energy, Volume 206, 15 November 2017, Pages 267-277

ترجمه کلمات کلیدی
عدم استقرار شرایط آب و هوایی، زیرساخت برق، اوج تقاضا، مدیریت ریسک، مدل سازی معادلات ساختاری،
کلمات کلیدی انگلیسی
Climate non-stationarity; Electric power infrastructure; Peak demand; Risk management; Structural equation modeling;
پیش نمایش مقاله
پیش نمایش مقاله  پیش بینی های برنامه ریزی تقاضای برق باید شرایط غیر سازمانی آب و هوا را برای حفظ حاشیه های ذخیره در طول امواج گرمایشی در نظر بگیرند

چکیده انگلیسی

This study used downscaled global climate models (GCMs) to evaluate the effects of non-stationarity on air temperature forecasts, and a new high-level statistical approach was developed to consider the subsequent effects on peak demand, power generation, and local reserve margins (LRMs) compared to previous forecasting methods. Air temperature projections in IPCC RCPs 4.5 and 8.5 are that increases up to 6 °C are possible by the end of century, with highs of 58 °C and 56 °C in Phoenix, Arizona and Los Angeles, California respectively. In the hottest scenarios, we estimated that LRMs for the two metro regions would be on average 30% less than at respective T90s, which in the case of Los Angeles (a net importer) would require 5 GW of additional power to meet electrical demand. We calculated these values by creating a structural equation model (SEM) for peak demand based on the physics of common AC units; physics-based models are necessary to predict demand under unprecedented conditions for which historical data do not exist. The SEM forecasts for peak demand were close to straight-line regression methods as in prior literature from 25–40 °C (104 °F), but diverged lower at higher temperatures. Power plant generation capacity derating factors were also modeled based on the electrical and thermal performance characteristics of different technologies. Lastly, we discussed several strategic options to reduce the risk of LRM shortages; including implementing technology, market incentives, and urban forms that reduce peak load and load variance per capita as well as their tradeoffs with several other stakeholder objectives.