دانلود مقاله ISI انگلیسی شماره 98644
ترجمه فارسی عنوان مقاله

یک تجزیه و تحلیل ارزشمند داده بیزی با استفاده از روش چند مرحله ای مونت کارلو

عنوان انگلیسی
An efficient Bayesian data-worth analysis using a multilevel Monte Carlo method
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
98644 2018 53 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Advances in Water Resources, Volume 113, March 2018, Pages 223-235

ترجمه کلمات کلیدی
روش چند سطحی مونت کارلو، تجزیه و تحلیل داده های بیزی، عدم قطعیت اندازه گیری، کارایی محاسباتی،
کلمات کلیدی انگلیسی
Multilevel Monte Carlo method; Bayesian data-worth analysis; Uncertainty quantification; Computational efficiency;
پیش نمایش مقاله
پیش نمایش مقاله  یک تجزیه و تحلیل ارزشمند داده بیزی با استفاده از روش چند مرحله ای مونت کارلو

چکیده انگلیسی

Improving the understanding of subsurface systems and thus reducing prediction uncertainty requires collection of data. As the collection of subsurface data is costly, it is important that the data collection scheme is cost-effective. Design of a cost-effective data collection scheme, i.e., data-worth analysis, requires quantifying model parameter, prediction, and both current and potential data uncertainties. Assessment of these uncertainties in large-scale stochastic subsurface hydrological model simulations using standard Monte Carlo (MC) sampling or surrogate modeling is extremely computationally intensive, sometimes even infeasible. In this work, we propose an efficient Bayesian data-worth analysis using a multilevel Monte Carlo (MLMC) method. Compared to the standard MC that requires a significantly large number of high-fidelity model executions to achieve a prescribed accuracy in estimating expectations, the MLMC can substantially reduce computational costs using multifidelity approximations. Since the Bayesian data-worth analysis involves a great deal of expectation estimation, the cost saving of the MLMC in the assessment can be outstanding. While the proposed MLMC-based data-worth analysis is broadly applicable, we use it for a highly heterogeneous two-phase subsurface flow simulation to select an optimal candidate data set that gives the largest uncertainty reduction in predicting mass flow rates at four production wells. The choices made by the MLMC estimation are validated by the actual measurements of the potential data, and consistent with the standard MC estimation. But compared to the standard MC, the MLMC greatly reduces the computational costs.