دانلود مقاله ISI انگلیسی شماره 117989
ترجمه فارسی عنوان مقاله

با استفاده از مدل سازی مخلوط، کمون های عملکردی کمتری ایجاد می شود

عنوان انگلیسی
Thresholding functional connectomes by means of mixture modeling
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
117989 2018 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : NeuroImage, Volume 171, 1 May 2018, Pages 402-414

ترجمه کلمات کلیدی
اتصال به عملکرد مدل سازی مخلوط، نرخ کشف دروغ،
کلمات کلیدی انگلیسی
Functional connectivity; Mixture modeling; False discovery rate;
پیش نمایش مقاله
پیش نمایش مقاله  با استفاده از مدل سازی مخلوط، کمون های عملکردی کمتری ایجاد می شود

چکیده انگلیسی

We evaluate the method on synthetic benchmark fMRI datasets where the underlying network structure is known, and demonstrate that it gives improved performance with respect to the alternative methods for thresholding connectomes, given the canonical thresholding levels. We also demonstrate that mixture modeling gives highly reproducible results when applied to the functional connectomes of the visual system derived from the n-back Working Memory task in the Human Connectome Project. The sparse connectomes obtained from mixture modeling are further discussed in the light of the previous knowledge of the functional architecture of the visual system in humans. We also demonstrate that with use of our method, we are able to extract similar information on the group level as can be achieved with permutation testing even though these two methods are not equivalent. We demonstrate that with both of these methods, we obtain functional decoupling between the two hemispheres in the higher order areas of the visual cortex during visual stimulation as compared to the resting state, which is in line with previous studies suggesting lateralization in the visual processing. However, as opposed to permutation testing, our approach does not require inference at the cohort level and can be used for creating sparse connectomes at the level of a single subject.