دانلود مقاله ISI انگلیسی شماره 98674
ترجمه فارسی عنوان مقاله

استفاده ترکیبی از تجزیه و تحلیل عامل فاکتور و تحلیل موجک برای ارزیابی عوامل پنهان کنترل نوسانات سطح آب زیرزمینی در آبخوان آبرفت رودخانه

عنوان انگلیسی
The combined use of dynamic factor analysis and wavelet analysis to evaluate latent factors controlling complex groundwater level fluctuations in a riverside alluvial aquifer
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
98674 2017 18 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Hydrology, Volume 555, December 2017, Pages 938-955

ترجمه کلمات کلیدی
نوسانات سطح آب زیرزمینی، خوشه مبتنی بر موج. تجزیه و تحلیل فاکتور پویا، تحلیل ویولت، همبستگی متقابل چندتایی، کارآیی پویا موثر،
کلمات کلیدی انگلیسی
Groundwater level fluctuation; Wavelet based clustering; Dynamic factor analysis; Wavelet analysis; Multiresolution cross-correlation; Effective dynamic efficiency;
پیش نمایش مقاله
پیش نمایش مقاله  استفاده ترکیبی از تجزیه و تحلیل عامل فاکتور و تحلیل موجک برای ارزیابی عوامل پنهان کنترل نوسانات سطح آب زیرزمینی در آبخوان آبرفت رودخانه

To identify and quantitatively evaluate complex latent factors controlling groundwater level (GWL) fluctuations in a riverside alluvial aquifer influenced by barrage construction, we developed the combined use of dynamic factor analysis (DFA) and wavelet analysis (WA). Time series data of GWL, river water level and precipitation were collected for 3 years (July 2012 to June 2015) from an alluvial aquifer underneath an agricultural area of the Nakdong river basin, South Korea. Based on the wavelet coefficients of the final approximation, the GWL data was clustered into three groups (WCG1 to WCG3). Two dynamic factors (DFs) were then extracted using DFA for each group; thus, six major factors were extracted. Next, the time–frequency variability of the extracted DFs was examined using multiresolution cross-correlation analysis (MRCCA) with the following steps: 1) major driving forces and their scales in GWL fluctuations were identified by comparing maximum correlation coefficients (rmax) between DFs and the GWL time series and 2) the results were supplemented using the wavelet transformed coherence (WTC) analysis between DFs and the hydrological time series. Finally, relative contributions of six major DFs to the GWL fluctuations could be quantitatively assessed by calculating the effective dynamic efficiency (Def). The characteristics and relevant process of the identified six DFs are: 1) WCG1DF4,1 as an indicative of seasonal agricultural pumping (scales = 64–128 days; rmax = 0.68–0.89; Def ≤ 23.1%); 2) WCG1DF4,4 representing the cycle of regional groundwater recharge (scales = 64–128 days; rmax = 0.98–1.00; Def ≤ 11.1%); 3) WCG2DF4,1 indicating the complex interaction between the episodes of precipitation and direct runoff (scales = 2–8 days; rmax = 0.82–0.91; Def  ≤ 35.3%) and seasonal GW-RW interaction (scales = 64–128 days; rmax = 0.76–0.91; Def  ≤ 14.2%); 4) WCG2DF4,4 reflecting the complex effects of seasonal pervasive pumping and the local recharge cycle (scales = 64–128 days; rmax = 0.86–0.94; Def  ≤ 16.4%); 5) WCG3DF4,2 as the result of temporal pumping (scales = 2–8 days; rmax = 0.98–0.99; Def  ≤ 7.7%); and 6) WCG3DF4,4 indicating the local recharge cycle (scales = 64–128 days; rmax = 0.76–0.91; Def  ≤ 34.2 %). This study shows that major driving forces controlling GWL time series data in a complex hydrological setting can be identified and quantitatively evaluated by the combined use of DFA and WA and applying MRCCA and WTC.