دانلود مقاله ISI انگلیسی شماره 105572
ترجمه فارسی عنوان مقاله

یک برنامه جدید دوبعدی انعطاف پذیر برای کار زمانبندی یکپارچه سازی زمان پردازش، تولید سبز و شاخص های شاخص انسانی است

عنوان انگلیسی
A new double flexible job-shop scheduling problem integrating processing time, green production, and human factor indicators
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
105572 2018 30 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Cleaner Production, Volume 174, 10 February 2018, Pages 560-576

ترجمه کلمات کلیدی
دو بار انعطاف پذیری برنامه زمانبندی فروشگاه، شاخص های تولید سبز، عوامل انسانی، بهینه سازی چند هدفه، الگوریتم ژنتیک ترکیبی،
کلمات کلیدی انگلیسی
Double flexible job shop scheduling problem; Green production indicators; Human factors; Multi-objective optimization; Hybrid genetic algorithm;
پیش نمایش مقاله
پیش نمایش مقاله  یک برنامه جدید دوبعدی انعطاف پذیر برای کار زمانبندی یکپارچه سازی زمان پردازش، تولید سبز و شاخص های شاخص انسانی است

چکیده انگلیسی

In this paper, we propose an original double flexible job-shop scheduling problem (DFJSP), in which both workers and machines are flexible. Because of the characteristics of double flexibility, DFJSP conforms to practical production better than the flexible job-shop scheduling problem (FJSP). In addition, a multi-objective optimization mathematic model according to the DFJSP is proposed, which is concerned with the processing time indicator that is usually optimized by most existing studies; green production indicators, namely, factors regarding environmental protection; and human factor indicators, which are actual indispensable elements that exist in the production system. Furthermore, ten benchmarks of DFJSP are presented and solved using a newly proposed hybrid genetic algorithm (NHGA). With the proposed NHGA, a new well-designed three-layer chromosome encoding method and some effective crossover and mutation operators are developed. To obtain the best combination of key parameters in NHGA, the Taguchi design of experiment method is used for their evaluation. Finally, comparisons between NHGA and NSGA-II show that the proposed NHGA has advantages in terms of the solving accuracy and efficiency of the DFJSP, particularly at a large scale. It would be beneficial to apply our proposed model to the multi-objective optimization of scheduling problems, especially those considering human factor and green production-related indicators.