دانلود مقاله ISI انگلیسی شماره 105583
ترجمه فارسی عنوان مقاله

یک تحقیق تکاملی چند مرحله ای چند مرحله ای موثر برای مشکل انعطاف پذیر شغل

عنوان انگلیسی
An effective multi-start multi-level evolutionary local search for the flexible job-shop problem
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
105583 2017 16 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Engineering Applications of Artificial Intelligence, Volume 62, June 2017, Pages 80-95

پیش نمایش مقاله
پیش نمایش مقاله  یک تحقیق تکاملی چند مرحله ای چند مرحله ای موثر برای مشکل انعطاف پذیر شغل

چکیده انگلیسی

In this paper, an improved greedy randomized adaptive search procedure (GRASP) with a multi-level evolutionary local search (mELS) paradigm is proposed to solve the Flexible Job-shop Problem (FJSP). The FJSP is a generalisation of the well-known Job-Shop Problem with the specificity of allowing an operation to be processed by any machine from a given set. The GRASP metaheuristic is used for diversification and the mELS is used for intensification. Four different neighbourhood structures are formalised. A procedure for fast estimation of the neighbourhood quality is also proposed to accelerate local search phases. The metaheuristic has been tested on several datasets from the literature. The experimental results demonstrate that the proposed GRASP-mELS has achieved significant improvements for solving FJSP from the viewpoint of both quality of solutions and computation time. A comparison among the proposed GRASP-mELS and other state-of-the-art algorithms is also provided in order to show the effectiveness and efficiency of the proposed metaheuristic.