دانلود مقاله ISI انگلیسی شماره 105593
ترجمه فارسی عنوان مقاله

یک مدل ریاضی و یک روش چند منظوره برای برنامه ریزی کار انعطاف پذیر کارخانه انعطاف پذیر کم کربن

عنوان انگلیسی
A novel mathematical model and multi-objective method for the low-carbon flexible job shop scheduling problem
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
105593 2017 16 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Sustainable Computing: Informatics and Systems, Volume 13, March 2017, Pages 15-30

ترجمه کلمات کلیدی
برنامه ریزی کم کربن، برنامه ریزی کار انعطاف پذیر، بهینه سازی چند هدفه، بهره وری انرژی، صدای نویز
کلمات کلیدی انگلیسی
Low-carbon scheduling; Flexible job shop scheduling; Multi-objective optimization; Energy efficiency; Noise emission;
پیش نمایش مقاله
پیش نمایش مقاله  یک مدل ریاضی و یک روش چند منظوره برای برنامه ریزی کار انعطاف پذیر کارخانه انعطاف پذیر کم کربن

چکیده انگلیسی

Most conventional scheduling problems use production efficiency, cost and quality as their preeminent optimization objectives. However, because of increasing costs of energy and environmental pollution, “low-carbon scheduling” as a novel scheduling model has received increasing attention from scholars and engineers. This scheduling model focuses on reducing energy consumption and environmental pollution at the workshop level. In this paper, a new low-carbon mathematical scheduling model is proposed for the flexible job-shop environment that optimizes productivity, energy efficiency and noise reduction. In this model, the machining spindle speed — which affects production time, power and noise — is flexible and is treated as an independent decision-making variable. The methods of evaluation of productivity, energy consumption and noise are presented. A multi-objective genetic algorithm based on a simplex lattice design is proposed to solve this mixed-integer programming model effectively. The corresponding encoding/decoding method, fitness function, and crossover/mutation operators are designed specifically for the features of this problem. Three example problem instances with different scales and one Engineering case study illustrate and evaluate the performance of this method. The results demonstrate the effectiveness of the proposed model and method for the low-carbon job shop scheduling problem.