دانلود مقاله ISI انگلیسی شماره 105607
ترجمه فارسی عنوان مقاله

یک الگوریتم کلونی چندگانه زنبور عسل ترکیبی جدید برای مسدود کردن مسائل زمانبندی مغازه جریان جریانی جریان

عنوان انگلیسی
A novel hybrid multi-objective artificial bee colony algorithm for blocking lot-streaming flow shop scheduling problems
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
105607 2018 38 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Knowledge-Based Systems, Volume 148, 15 May 2018, Pages 115-130

ترجمه کلمات کلیدی
برنامه ریزی، مسدود کردن جریانی جریان جریان، بهینه سازی چند هدفه، الگوریتم کلونی زنبور عسل مصنوعی، جستجوی محلی پاریتو،
کلمات کلیدی انگلیسی
Scheduling; Blocking lot-streaming flow shop; Multi-objective optimization; Artificial bee colony algorithm; Pareto local search;
پیش نمایش مقاله
پیش نمایش مقاله  یک الگوریتم کلونی چندگانه زنبور عسل ترکیبی جدید برای مسدود کردن مسائل زمانبندی مغازه جریان جریانی جریان

چکیده انگلیسی

A blocking lot-streaming flow shop (BLSFS) scheduling problem is to schedule a number of jobs on more than one machine, where each job is split into a number of sublots while no intermediate buffers exist between adjacent machines. The BLSFS scheduling problem roots from traditional job shop scheduling problems but with additional constraints. It is more difficult to be solved than traditional job shop scheduling problems, yet very popular in real-world applications, and research on the problem has been in its infancy to date. This paper presents a hybrid multi-objective discrete artificial bee colony (HDABC) algorithm for the BLSFS scheduling problem with two conflicting criteria: the makespan and the earliness time. The main contributions of this paper include: (1) developing an initialization approach using a prior knowledge which can produce a number of promising solutions, (2) proposing two crossover operators by taking advantage of valuable information extracted from all the non-dominated solutions in the current population, and (3) presenting an efficient Pareto local search operator based on the Pareto dominance relation. The proposed algorithm is empirically compared with four state-of-the-art multi-objective evolutionary algorithms on 18 test subsets of the BLSFS scheduling problem. The experimental results show that the proposed algorithm significantly outperforms the compared ones in terms of several widely-used performance metrics.