دانلود مقاله ISI انگلیسی شماره 139202
ترجمه فارسی عنوان مقاله

یک چارچوب ترکیبی برای مهندسی معکوس شبکه های قوی تنظیم ژن

عنوان انگلیسی
A hybrid framework for reverse engineering of robust Gene Regulatory Networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
139202 2017 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Artificial Intelligence in Medicine, Volume 79, June 2017, Pages 15-27

پیش نمایش مقاله
پیش نمایش مقاله  یک چارچوب ترکیبی برای مهندسی معکوس شبکه های قوی تنظیم ژن

چکیده انگلیسی

The inference of Gene Regulatory Networks (GRNs) using gene expression data in order to detect the basic cellular processes is a key issue in biological systems. Inferring GRN correctly requires inferring predictor set accurately. In this paper, a fast and accurate predictor set inference framework which linearly combines some inference methods is proposed. The purpose of the combination of various methods is to increase the accuracy of inferred GRN. The proposed framework offers a linear weighted combination of Pearson Correlation Coefficient (PCC) and two different feature selection approaches, namely: Information Gain (IG) and ReliefF. In order to set the appropriate weights, Genetic Algorithm (GA) is used. Similarity measure is considered as fitness function to guide GA. At the end, based on the obtained weights, the best predictor set of GRN using three aforementioned inference methods is selected and the network topology is formed. Due to the huge volume of gene expression data, GRN inference algorithms should infer GRN at a reasonable runtime. Hence, a novel criterion is provided to evaluate GRNs based on runtime and accuracy. The simulation results using biological data indicate that the proposed framework is fast and more reliable compared to other recent methods [1–7].