دانلود مقاله ISI انگلیسی شماره 139319
ترجمه فارسی عنوان مقاله

ساخت پوشش های ضد انفجار پهنای باند با استفاده از نظارت نوری با طول موج طولی غیر مستقیم باند پهن

عنوان انگلیسی
Fabrication of broadband antireflection coatings using wavelength-indirect broadband optical monitoring
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
139319 2018 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Optik - International Journal for Light and Electron Optics, Volume 156, March 2018, Pages 325-332

ترجمه کلمات کلیدی
پرتو یون پرتو، نظارت مستقیم نوری باند پهن، پوشش ضد انفجار باند پهن، نظارت بر نوری پهنای باند طول موج غیر مستقیم،
کلمات کلیدی انگلیسی
Ion beam sputtering; Direct broadband optical monitoring; Broadband antireflection coating; Wavelength-indirect broadband optical monitoring;
پیش نمایش مقاله
پیش نمایش مقاله  ساخت پوشش های ضد انفجار پهنای باند با استفاده از نظارت نوری با طول موج طولی غیر مستقیم باند پهن

چکیده انگلیسی

Multi-layer optical coatings with complex spectrum requirements, such as multi-band pass filters, notch filters, ultra-broadband antireflection coating and etc., whose working wavelength is out of monitoring wavelength range, are difficult to be fabricated using direct broadband optical monitoring (BBOM). In this paper, a broadband antireflection (AR) coating in the wavelength range from 1300 nm to 2000 nm at 45° incident was designed and deposited by dual ion beam sputtering (DIBS). Ta2O5 and SiO2 were chosen as high and low refractive index coating materials, respectively. The optimized coating structure contains 4 non-quarter-wave (QW) layers. In order to obtain high transmittance, the most important is to realize the thickness accurate control. Due to the limitation of the monitoring wavelength range, which is only from 450 nm to 1000 nm, a wavelength-indirect broadband optical monitoring strategy was successfully employed to control the layers thickness during the deposition process. At last, a good agreement between theoretical and measured transmittance is obtained. The maximum error (the first layer) is only about 5.3% and the minimum error (the third layer) is about −0.25% base on the results of reverse engineering analysis.